C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Computer Oriented Numerical Methods

Subject Code: 4CS02ICN2		Branch: B.Sc.IT		
Semester: 2 Date: 04/05/2017		Time: 02:00 to 05:00 Marks: 70		

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (14)

a) If
$$A = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then $AB = _$. (01)
a) $\begin{bmatrix} 1 & 1 \end{bmatrix}$ **b)** $\begin{bmatrix} 0 & 0 \end{bmatrix}$ **c)** $\begin{bmatrix} 0 \end{bmatrix}$ **d)** $\begin{bmatrix} 1 \end{bmatrix}$

b) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 is a square matrix then $A' =$ _____. (01)

a)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ c) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ d) none of these
b) If $A = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 1 \\ 3 & 1 \end{bmatrix}$ are two matrices then $A + B$ is

c) If
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 1 \\ 0 & 3 \end{bmatrix}$ are two matrices then $A + B$ is _____. (01)

a)
$$\begin{bmatrix} 6 & 3 \\ 0 & 4 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix}$ d) not possible

d) If
$$A = \begin{bmatrix} 0 & -2 \\ 3 & 1 \end{bmatrix}$$
 is a square matrix then $adjA =$ _____. (01)

a)
$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 0 & -2 \\ -3 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}$ d) none of these

e) Iterative methods are fast than direct methods. – True or False? (01)

- f) Define: Forward Difference(01)g) One root of the given equation $x^2 + 3x 5 = 0$ is between _____.(01)
 - a) 0 and 1 b) 1 and 2 c) -1 and 0 d) none of these

Page 1 of 3

- **h**) The degree of the differential equation $\frac{d^2 y}{dx^2} 1 + \left(\frac{dy}{dx}\right)^3 = \left(\frac{d^2 y}{dx^2}\right)^3$ is (01)
 - (a) 1 (b) 2 (c) 3 (d) 6

i) j)	Runge-Kutta method is a self-starting method. – True or False? The Gauss elimination method in which the set of equations are transformed into triangular form. – True or False?	(01) (01)
k)	Write the formula of Gaussian quadrature for $n=2$.	(02)
l)	What is the full form of IVP and BVP?	(02)
	Attempt any four questions from Q-2 to Q-8	

Q-2 Attempt all questions:

- a) Solve the system of equation by Gauss-Jacobi method upto four iteration. (05) 27x+6y-z=85; 6x+15y+2z=72; x+y+54z=110
- b) Find the roots of equation $x^3 9x + 1 = 0$ by using False position method correct (05) up to three decimal places.

c) If
$$A = \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 3 \\ 5 & 4 \end{bmatrix}$ then find matrix $A + 2B$ and $3A - B$. (04)

Q-3 Attempt all questions:

a) If
$$A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ are two matrices then find *AB*, *BA*. (07)

b) Find adjoint and inverse of the matrix $A = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 1 & -1 \\ 5 & 0 & 1 \end{bmatrix}$ by using co-factors. (07)

Q-4 Attempt all questions:

- a) Solve the following system of equations by Gauss elimination method: (05) x+2y-z=1; x+y+2z=9; 2x+y-z=2
- b) Solve the following system of equation by Gauss-Seidel method: (05) 4x+y+z=8; 2x+4y+z=1; x+y+4z=5
- c) Solve the following system of equation by Gauss-Jordan method: (04) x+y+z=7; 3x+3y+4z=24; 2x+y+3z=16

Q-5 Attempt all questions:

a) Compute f(0.56) by using Newton's forward difference formula for the following table:

x	0.5	0.6	0.7	0.8	
f(x)	1.127625	1.185465	1.255169	1.337435	

b) Use Lagrange interpolation formula to find the value of f(10) from the (05) following data

x	5	6	9	11
f(x)	12	13	14	16

c) Find y(4.25) by using Newton's backward difference formula for the following (04) table:

x	2.5	3	3.5	4	4.5
у	11.5	13.56	15.89	18.25	20.56

Q-6 Attempt all questions:

- a) Find the root of the equation $x^3 2x + 5 = 0$ by bisection method up to three (05) decimal places.
- **b**) Find the roots of equation $\cos x xe^x = 0$ by using secant method correct up to four decimal places. (05)
- c) Find the root of the equation $x^3 6x + 4 = 0$ by Newton-Raphson method up to (04) three decimal places.

Q-7 Attempt all questions:

a) Evaluate
$$\int_{0}^{\infty} e^{x} dx$$
 by trapezoidal rule with n = 10. (05)

b) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
 by using Simpson's $\frac{3}{8}$ rule taking $h = \frac{1}{6}$. (05)

c) Consider the following values and find
$$\int_{0}^{1} x \, dx$$
 by sinpson's $\frac{1}{3}$ rule. (04)

Q-8 Attempt all questions:

- a) Use Runge-Kutta second order method to find the approximate value of y(0.2) given that $\frac{dy}{dx} = x y^2$, y(0) = 1 and h = 0.1. (05)
- b) Use Runge-Kutta fourth order method to find the approximate value of y(0.1) given that $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 and h = 0.1. (05)

c) Using Euler's method to find y(0.2) with h = 0.1 given $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1. (04)

Page 3 of 3

(05)